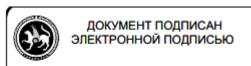
МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ


Министерство образования и науки Республики Татарстан Муниципальное казенное учреждение «Управление образования Лаишевского муниципального района Республики Татарстан»

Муницпальное бюджетное общеобразовательное учреждение «Атабаевская СОШ имени Героя РФ Ахметшина М.Р.»

РАССМОТРЕНО руководитель ШМО учителей естественнометематического цикла
______Г.Н. Хабибуллина Протокол №1 от 28.08.2023 г

СОГЛАСОВАНО заместитель директора по УВР

_______Л.Т.Хамитова
31.08.2023 года

Сертификат 1a77b70034b0c7be4b8ab2285f85e428 Владелец: 'ХУСАИНОВ АЛЬБЕРТ ХАМИТОВИЧ Действителен: 03.07.2023 до 03.10 2024

РАБОЧАЯ ПРОГРАММА

Элективного курса по физике «Решение качественных задач»

С. Атабаево 2023

Пояснительная записка

Реализация идеи профильного обучения на старшей ступени предполагает создание востребованных учащимися и их родителями элективных курсов. Один из таких курсов - элективный курс «Методы решения качественных и расчетных физических задач».

обучающихся 11 Курс рассчитан на классов И предполагает совершенствование подготовки школьников по освоению основных разделов физики. Содержание элективного курса отличается от базового глубиной рассмотрения физических процессов, расширением изучаемого материала по сравнению с программным, разбором задач, требующих нестандартных подходов. Настоящая программа является дополняющим материалом к основному учебнику физики. Она позволяет более глубоко и осмысленно изучать практические и теоретические вопросы физики. Программа посвящена рассмотрению отдельных тем, важных для успешного освоения методов решения задач повышенной сложности. В программе рассматриваются теоретические вопросы, в том числе понятия, схемы и графики, которые часто встречаются в формулировках контрольно-измерительных материалов по ЕГЭ, а также практическая часть. В практической части рассматриваются вопросы по решению экспериментальных задач, которые позволяют применять математические знания и навыки, которые способствуют творческому и осмысленному восприятию материала.

Программа элективного курса согласована с требованиями государственного образовательного стандарта и содержанием основных программ курса физики профильной школы. Она ориентирует учителя и ученика на дальнейшее совершенствование уже усвоенных учащимися знаний и умений. Особое внимание уделяется значению изучаемого материала для жизни и здоровья человека.

При изучении курса учащиеся выполняют ряд обязательных зачётных работ и контрольных тестов по разделам.

1.1. Цели и задачи

Цели:

- 1. Научить обучающихся, интересующихся предметами естественнонаучного цикла, не только понимать физические явления и закономерности, но и применять их на практике путём решения задач разной сложности, различного типа (исследовательские, тестовые, задачи-оценки, качественные, графические, занимательные).
- 2. Расширить кругозор школьников и углубить знания по основным темам базового курса физики.
- 3. Сформировать представления о постановке, классификации, приемах и методах решения физических задач.

- 4. Дать учащимся представление о практическом применении законов физики к изучению физических явлений и процессов, происходящих в окружающем нас мире.
 - 5. Помочь выпускнику подготовиться к успешной сдаче ЕГЭ.

Другими словами, цель курса можно определить как качественную подготовку обучающихся к ЕГЭ по физике. Для достижения поставленной цели необходимо решить ряд организационных, дидактических, образовательных задач.

Задачи:

- 1. создать организационные условия для успешной реализации программы;
- 2. познакомить обучающихся со структурой теста ЕГЭ, кодификатором элементов содержания, спецификацией экзаменационной работы и подходами к оцениванию работы;
- 3. актуализировать знания по темам и разделам школьного курса последовательно систематизировать ранее изученный теоретический материал;
- 4. сформировать умения решать задачи с выбором ответа, задачи со свободным ответом и задачи с подробным оформлением (последовательно по всем темам курса физики)
- 5. научить оценивать собственные возможности школьников при выполнении заданий базового, повышенного и высокого уровней сложности;
- 6. выработать у обучающихся собственную стратегию выполнения экзаменационной работы;
- 7. развивать мотивацию для самостоятельной работы обучающихся по выполнению тренировочных работ в домашних условиях;
- 8. развивать личностные качества школьников: ответственность, аккуратность, активность, потребность в саморазвитии.

1.2. Нормативные правовые документы

Настоящая программа написана на основании следующих нормативных документов:

- Федеральный закон от 29.12.2012 г. № 273-ФЗ "Об образовании в Российской Федерации" с изменениями и дополнениями.
- Приказ Минобрнауки РФ от 17.12.2010 № 1897 "Об утверждении федерального государственного образовательного стандарта основного общего образования" (Зарегистрировано в Минюсте РФ 01.02.2011 N 19644) с изменениями и дополнениями.
- Фундаментальное ядро содержания общего образования/ под ред. В.В.
 Козлова, А.М. Кондакова. Москва: Просвещение, 2011.

- Примерная основная образовательная программа основного общего образования (протокол от 8 апреля 2015 г. № 1/15).
- Учебный план МБОУ « Атабаевская СОШ имени Героя РФ Ахметшина М.Р.» на 2023-2024 уч. год.

1.3.Сведения о программе

Рабочая программа элективного курса составлена на основе следующей литературы:

- 1. «Программы элективных курсов. Физика. 9-11 классы. Профильное обучение», составитель: В.А. Коровин, «Дрофа», 2008 г.
- 2. Авторская программа «Методы решения физических задач»: В.А. Орлов, Ю.А.Сауров, М.: Дрофа, 2008 г.
- 3. Учебное пособие «Практика решения физических задач. 10-11 классы»: В.А. Орлов, Ю.А. Сауров, «Вентана-Граф», 2013

1.4 Информация о количестве учебных часов

Программа элективного курса рассчитана на 34 учебных недели, 1 час в неделю, 34 часа за год обучения.

Планируемые результаты освоения курса

Личностные:

- развить индивидуальные, творческие способности обучающихся, коммуникативные навыки;
- сформировать мировоззрение, соответствующее современному уровню развития науки; -сформировать способность к образованию, самообразованию, сознательное отношение к непрерывному образованию;
- сформировать навыки сотрудничества со сверстниками, готовность к самостоятельной, творческой и ответственной деятельности.

Метапредметные:

- сформировать умение самостоятельно определять цели и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности;
- развить умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности;
- развить способность и готовность к самостоятельному поиску методов решения задач различного типа, умение ориентироваться в различных источниках информации, умение использовать ИКТ для решения стоящих задач;
 - сформировать умение самостоятельно оценивать и принимать решения;

– развить умение познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.

Предметные:

- сформировать мыслительные операции, необходимые при решении задач: целесообразность (осознание результата), конструктивность (описание физических объектов), последовательность (удержание в сознании общего плана решения), завершенность (получение реальных ответов)
- развить умение решать физические задачи, уверенно пользоваться физической теорией при решении задач различного типа, объяснять полученные результаты.
- сформировать навыки решения типовых задач с подтекстом, решения задач повышенной сложности, решения одной задачи несколькими способами.

Содержание курса

	Содержание курса						
<u>№</u>	Наименование	Содержание курса	Характеристика основных				
Π/Π	раздела, темы		видов деятельности				
1.	Введение.	Что такое физическая задача.	Осмысление полученной				
	Правила и	Классификация задач.	информации, решение				
	приемы решения	Примеры задач различных	задач на сравнение и				
	физических задач	типов. Состав физической	различие, абстракцию и				
	(4 часа)	задачи. Физическая теория и	обобщение, на анализ и				
		методы решения задач.	синтез				
		Способы и техника					
		составления задач. Правила и					
		приемы решения физических					
		задач. Значение задач в					
		обучении и в жизни.					
2.	Механика (19	Задачи на расчет параметров	Анализ задач на				
	часов)	равноускоренного движения.	механические процессы,				
	– Кинематика	Решения графических задач на	актуализация				
	– Динамика	движение. Применение	теоретических знаний,				
	– Статика	законов динамики	поиск выходов из				
	– Законы	материальной точки. Задачи на	затруднений,				
	сохранения	движение тел под действием	аргументация,				
	 Механические 	нескольких сил. Законы	обоснование решения,				
	колебания и волны	сохранения в механических	поиск новых вариантов				
		процессах.	решения задач				
			Решение тестовых задач				

3.	Молекулярная	Задачи на строение и свойство	Анализ задач на законы		
	физика.	газов. Особенности решения	термодинамики и		
	Термодинамика	задач на агрегатные состояния	молекулярной физики,		
	(12 часов)	вещества. Составление	актуализация		
		уравнения теплового баланса.	теоретических знаний,		
		Задачи на расчет	выдвижение гипотез,		
		механического напряжения,	аргументация,		
		модуля Юнга. Применение	обоснование решения,		
		законов термодинамики при	поиск новых вариантов		
		решении задач.	решения задач		
4.		Особенности решения задач по	Анализ задач из раздела		
	Электродинамика	электростатике. Задачи на	электродинамика,		
	(14 часов)	применение принципа	актуализация		
	– Электрическое	суперпозиции полей. Задачи	теоретических знаний,		
	поле	на применение законов	выдвижение гипотез,		
	-Законы	постоянного тока. Расчет	аргументация,		
	постоянного тока	электрических цепей.	обоснование решения,		
	-Электромагнитно	Применение закона Ома для	поиск новых вариантов		
	е поле	полной цепи. Решение задач	решения задач		
	-Электромагнитна	на расчет характеристик	Решение тестовых задач		
	я индукция	магнитного поля. Задачи на			
	– Электромагнитн	расчет сил Ампера и Лоренца.			
	ые колебания и	Применение правил правой и			
	ВОЛНЫ	левой руки. Задачи на			
	-Оптика	определение ЭДС индукции			
	– Релятивистская	иа применение правила Ленца.			
	— Г СЛЯТИВИСТСКАЯ механика	Электромагнитные колебания.			
	мсханика	Расчет цепей переменного			
		тока. Применение правил			
		дифференцирования при			
		решении задач по теме			
		«Электромагнитные колебания			
		и волны». Постулаты СТО.			
		Взаимосвязь массы и энергии.			
		Задачи на применение законов			
		оптики			
5.	Квантовая	Решение задач на законы	Анализ задач из раздела		
	физика и	фотоэффекта. Задачи на расчет	«Квантовые явления»,		
	элементы	энергии связи, дефекта масс.	актуализация		
	астрофизики	Расчет энергетического	теоретических знаний,		
	- Корпускуляр	выхода ядерных реакций.	выдвижение гипотез,		
	но-волновой	Задачи на закон	аргументация,		
	дуализм	радиоактивного распада	обоснование решения,		
	– Физика		поиск новых вариантов		

	атома – Физика атомного ядра		решения задач Решение тестовых задач
6.	Готовимся к ЕГЭ	Решение задач повышенной	Анализ задач,
		сложности	аргументация,
			обоснование решения,
			поиск различных
			вариантов решения задач.

Тематическое планирование

No	Тема	Кол-в	о часов
		теорет.	практич.
1	Введение.	1	2
	Правила и приемы решения физических задач		
2	Механика	1	7
3	Молекулярная физика. Термодинамика	1	4
4	Электродинамика	2	5
5	Квантовая физика и элементы астрофизики	1	3
6	Решение задач повышенной сложности		5
7	Итоговое занятие		1
	Итого:	6	28
	ИТОГО:		34

Календарно-тематическое планирование

No	№		Дата	
п/п	темы	Содержание занятий	По	Факт
			плану	
	1	Вводный инструктаж по ТБ. Что такое		
		физическая задача. Классификация		
		задач. Примеры задач различных типов.		
		Состав физической задачи. Физическая		
теория и методы решения задач.				
	2	Способы и техника составления задач		

	т .
	Правила и приемы решения физических
	задач. Значение задач в обучении и в
	жизни.
3	Входное тестирование
4	Равномерное прямолинейное движение.
	Равноускоренное прямолинейное
	движение
	Свободное падение. Баллистическое
	движение
5	Движение по окружности
6	Законы Ньютона
7	Закон всемирного тяготения
	Силы в природе
8	Кинетическая и потенциальные
	энергии
	Закон сохранения механической
	энергии
9	Репетиционный экзамен
10	Импульс. Закон сохранения импульса.
	Работа и мощность силы
11	Условие равновесия твердого тела
12	Закон Паскаля, сила Архимеда
13	Математический и пружинный
	маятники
14	Механические волны, звук
15	Механика (объяснение явлений;
	интерпретация результатов опытов,
	представленных в виде таблицы или
4 -	графиков)
16	Механика (изменение физических
17	величин в процессах)
17	Механика (установление
	соответствия между графиками и физическими величинами, между
	физическими величинами и формулами)
18	Связь между давлением и средней
	кинетической энергией. Абсолютная
	температура
	Связь температуры со средней
	кинетической энергией
	Уравнение Менделеева – Клапейрона

	Изопроцессы	
	Попроцессы	
19	Работа в термодинамике	
	Первый закон термодинамики	
	КПД тепловой машины	
	Относительная влажность воздуха	
	Количество теплоты	
20	МКТ, термодинамика (объяснение	
	явлений; интерпретация результатов	
	опытов, представленных в виде	
	таблицы или графиков)	
	МКТ, термодинамика (изменение	
	физических величин в процессах;	
	установление соответствия между	
	графиками и физическими величинами,	
	между физическими величинами и	
	формулами)	
21	Закон сохранения электрического	
	заряда,	
	закон Кулона	
	Принцип суперпозиции электрических	
	полей. Конденсатор	
22	Сила тока, закон Ома для участка цепи,	
	последовательное и параллельное	
	соединение, проводников, работа и	
	мощность тока, акон Джоуля – Ленца	
23	Магнитное поле проводника с током,	
	сила Ампера, сила Лоренца, правило	
	Ленца (определение направления)	
	Поток вектора магнитной индукции,	
	закон электромагнитной индукции	
	Фарадея	
	Индуктивность, энергия магнитного	
	поля катушки с током, колебательный	
24	контур	
24	Законы отражения и преломления	
	света	
	Ход лучей в линзе	
25	Формула тонкой линзы	
25	Постулаты СТО. Относительность	
	времени. Релятивистский закон	

	D	
	сложения скоростей. Взаимосвязь	
26.27	массы и энергии	
26-27	Электродинамика (объяснение явлений;	
	интерпретация результатов опытов,	
	представленных в виде таблицы или	
	графиков)	
	Электродинамика (изменение	
	физических величин в процессах)	
	Электродинамика и основы СТО	
	(установление соответствия между	
	графиками и физическими величинами,	
	между физическими величинами и	
	формулами)	
28-29	Планетарная модель атома. Нуклонная	
	модель ядра. Ядерные реакции.	
	Решение задач на законы фотоэффекта	
	Задачи на расчет энергии связи,	
	дефекта масс.	
	Расчет энергетического выхода	
	ядерных реакций.	
	Фотоны, линейчатые спектры, закон	
	радиоактивного распада	
30-31	Квантовая физика (изменение	
	физических величин в процессах;	
	установление соответствия между	
	графиками и физическими величинами,	
	между	
	физическими величинами и формулами)	
	Механика – квантовая физика (методы	
	научного познания)	
32-34	Молекулярная физика,	
	электродинамика	
	(расчетная задача)	
	Электродинамика, квантовая физика	
	(расчетная задача)	
	Механика – квантовая физика	
	(качественная задача)	
	Механика, молекулярная физика	
	(расчетная задача)	
	Механика (расчетная задача)	
	Молекулярная физика (расчетная	
	задача)	
	Электродинамика (расчетная задача)	
	Электродинамика, квантовая физика	
	электродинамика, квантовая физика	

(расчетная задача)	

Ресурсное обеспечение рабочей программы

Литература для учителя:

- 1. В.А. Орлов, Ю.А. Сауров. Методы решения физических задач. М.: Дрофа. 2008.
 - 2. Л.А.Кирик, Л.Э. Генденштейн. Задачи по физике для средней школы. М.: Илекса. 2009.

Литература для обучающихся:

- 1. Г.Я. Мякишев, Б.Б.Буховцев Физика. 11 кл.: Учебник для общеобразовательных учреждений. 8-е изд., дораб. М.: Дрофа, 2020.
- 2. Кирик Л.А., Генденштейн Л.Э.. Задачи по физике для средней школы. М.: Илекса, 2009
- 3. Кабардин О.Ф., Орлов В.А., Зильберман А.Р..Задачник по физике. 10-11 класс. М.: Дрофа, 2004.
- 4. Рымкевич А.П.. Физика. Задачник. 10-11 кл.: пособие для общеобразовательных учреждений 10-е изд, стереотип. М.: Дрофа, 2006